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0. Abstract.

'The error correction model for a vector valued time series has been

proposed and applied in the economic literature with the papers by

Sargan(1964), Davidson et al. (1978), Hendry and von Ungern-Sternberg(198l) and

huis been given a formal mathematical treatment by Granger(1983). He

introduced the notion of cointegratedness of a vector process and showed tlk .

rt-4ation between cointegration and error correction models.

This p-iper defines a general error correction model, that encompasses the

* usuial error correction model as well as the integral correction model by

* allowing a finite number of error corre ction terms Which correspond to linearL

* comnbinat ions of the vector process that are integrated of different order.

It is shown that this structure is inherent in the model if it is given

in autoregressive form or moving average form by exploiting the singularity of

* the matrix function that defines the model.

The theory is applied to some examples discussed by Davidson(1983) and

llarvey(19182).

Key words: Cointegration, error correction, non-stationary time series,
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1. Introduction.

Many of the current conitroversies concerning wacroeconuiaic policy issues,

particularly monetary questions, seem to derive from different views of the

duration and importance of short-run and long-run behavior of economic agents.

The fact that these controversies have to be resolved in the empirical arena,

canm clearly be demonstrated by a growing number of empirical applications in

which the dynamics of short-run and long-run adjustment processes are being

* miodelled. In particular, the idea of incorporating the dyna;.Fic adjustment to

long-run steady-state targets in the form of error correcting mechanisms, in

on autoregressive model for transitory short-iimm dynamic behavior, originally

suggested by Sargan(1964) and further developed by Davidson et al.(1978),

lwii.idry and von Ungern-Sternberg(1981), Davidson and Hendry(1981),etc. seems to

have introduc~d a useful approach to modelling the dynamics of economic

o r.

The error correction inodel is a model that combines the autore~gressive

form for the changes in y~ with existing economic theory as expressed in the

long-term static relation

(3.1)Ay + Bz =0

(,r in the steady-state growth relation

(.)Ay + 13 (z + LJz) 0.

An exaople of an error correction model is g(iven by

A) I )LIy t + B I(l)Ldz t -sD(,) [Ay t I + Bz t-1 C(L

Appl ications of this type of niodels usually have proved very successfil.

iii tierms of modAel fit, i-etaningful tentimates of parameters of interest,

i rl: , etc. Hloweiver, for a long time a formal mathematical treatment



'. - -

seemed to be lacking. Granger(1983) was the first to provide such a basis by

introducing the concept of cointegratedness between time series and relating

that to the concept of error correcting models. The idea of Granger, see also

Granger and Weiss(1983) and Granger and Engle(1985), is to start with a"

general model for xt =ytozt} expressing that Axt is stationary, i.e.

t*(1.4) Axt : C(L)e.t .::

and then showing that certain properties of the matrix function C(L) imply

that the components of xt are cointegrated. This is then used to derive an

error correction model. The purpose of this is to explain combinations of the

c's in terms of deviations in long-term relations between the non-stationary

components of the vector process {xt}, and to identify these long-term

relations using the concepv of cointegration.

The: purpose of this paper is to discuss the equations (1.1)-(1.4) and

some related concepts from a mathematical point of view, find their

in erre[ations, -d provide a framework in which their formal analysis can be

justified.

In doing so the concepts are clarified and generalised. We thus end up

with a very general type of model for a class of non-stationary stochastic L-.4
processes. Not all these models correspond to interesting economic models but

their structure permits a simple analysis and thus helps the understanding of

the interesting examples which are discussed in the economic literature. -

The paper is now organised as follows

Section 2 discusses the hasic properties of some non-stationary

proc.(tse:;. In particular the role of the starting values and their influence

on the process is di:;cUssed.

Fol lowing Granger(1983) Section 3 di';cusses the problem of determining
• " -1.

............................................ . . . .



the long-range relations in a system given by the moving average AN
' .

representation

dAdxt C(")s..

where d is the order of the process.We derive a general form of the error

correction model, that allows error correction terms of different order. The

usual error correction models, see Davidson et al.(1978), as well as the

integral correction models, see Hendry and von Ungern Sternberg(1981) and

I)ividson(1983), can be seen as special cases of the general model. Section 4

discusses formally the same problem, but now based on the autoregressive

representation

A(L)xt

where p is usually zero.

Conditions for this model to be interpreted as an error correction model

are formulated, and the order of the process is found. In section 5 we

c!:;ciiss the special situation where xt is decomposed into endogeneous and

cxogeneous variables and derive an error correction model for the targetting

error.

In section 6 we show how some examples from the economic literature can

bte treated by the general methods developed in the previous chapters, and
Section 7 contains the mathematical results which consist of finding a

r,-presentation of the determinant of a matrix valued function in terms of

certain indi(:es defined by the null spaces of succesive derivatives of the

funtction at L I

2. Th ousfcrtic ' it 1l u s_ of'" non-stationary processes.

It in customary to consider non-st ,tionary processes {xt} given by the

i:,U ,t ion

-3 °,



(2.1) = C .

wre x E Rm d -(z) is an mxu matrix valued holomorphic function

given by its power series with radius of convergence 1 + p, p > 0, and d is an k

integer. Here {e} is a sequence of independent identically distributed

random variables with mean 0 and variance matrix F. Note that the

coefficients of C(z) decrease exponentially fast, which shows that C(L)et is a

st.a-itionary process. It is easy to construct xt recursively starting with t =

0, say. This is done as follows: We sum (2.1) from t = 0 to t = T and find

dd-lx dd-l T
4 XTl + C(L)Z et""t=O

Suining again gives

d-2 d-l d-2
-xt =(t+) - x I + d2x 1 + C(L) Z -

0<u-s<t

It is seen that the proc-ss xt will be composed of two parts. The first is a

pcdynomial of degree d-1 with coerffcients depending on the past values of xt,

i.e. for t < 0. The second term is a repeated sum of the e's. We can write

xt = C(L),J-d t + Pd-l(t).
L-dt"""-

VV- Call Pd (t) the completely deterministic part of xt and C(L)A e the

random part of xt. Note that d- is defined as a finite sum from 0 to t. The

completely deterministic part can be considered a trend in the system showing

the influence of the past, whereas the random part contains the cumulative

effect of the: shocks to the system. As a simple example consider the equation

2'd -t t' t 0 ...

The solution is

t

xt IX + (t+l)Ax 1  + z s

Note that the trend part is just a straight line through points {-2,x_2 } and

( 1.x_ and that conditionally on these valites xt fluctuates around this

I, - " t



ttr-zd with a variance 1iven by

tt
2

S.-0

lfo{::,o the variance increases to infinity with t. This is often expressed by

* rn,.: ng that the proce-ss has infinite variance. A stationary process can be

st~n-Led at "minus infinity" but a non-stationary process must be started at a -

fiv 'te time point, and the whole process has to be considered conditionally on

th(- values before this time, otherwise the process is simply not defined by

th,- equation (2.1). One can subtract Pd (t) from xt, since the difference

bal,, satisfies the differential equation, but now with the starting values

This problem has irplications for some of the formal calculations often

applied to time series. Consider for instance the equation

Ad = C(L)I et , t _ 0.

1? ' sum b times we obtain

Adxt C(L)Pt + P bl(t),

0he Pb l(t) has coefficients depending on the values of {xt,eG with t <
b-l b

0. .1 is one can cancel Ab, at the expense of adding a trend of order b-l. One

b
Aso justify the cancellation of A as an operation on the random part of

tI'- process. In the following we shall in some examples be explicit about the

ticT. (d, but the later examples only the random part will be dealt with in

Next we turn to the notion of cointegrat:ion, see Granger(J.133).

Defi-nition.2.1. We :;hall call x integrated of order d if xt has the

rep. -ientat ion

Axt -C(L) t P (t)
t b

-,11 b ( i:; a cotn)l I Iy d(,ttrmini-;t ic polynomial of (legree b, and C(l) 3k

r

.-....-
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0. In other words xt is integrated of order d if A d is stationary apart

from a completely deterministic component. Notice that C(1) A 0 implies that

d- 1
A X is not stationary.

tL

Definition 2.2. Let x be integrated of order d. We shall call x

cointegrated with cointegration vector a F Om of order s if a'x is integrated
t

of order d-s.

Thus the order of xt is reduced by s if the combination a'xt is

considered.

It is mathematically convenient to allow any vector a in the definition

of cointegration. Thus if a (1,0,0)' say, then a'xt  X lt. We thus express

the fact that some components of xt is in fact integrated of lower order than

the whole vector process, by saying that a certain unit vector is a

cfintegration factor. This is clearly a slight abuse of the idea behind

cointegration but it makes the formulation simpler.

-

. . ... i



3. The error correct ion model derived fArom the mov ingjivera ge

rep resen tat ion.

We shall consider the equation

(A1 xd rC(L)et t>0,

and assume that C(z) is holomorphic for Izi < l+p ,and is non-singular for

jzj :5 1-1p except for z 1, where we assume that C(1) is singular but A 0,L

since if C(l) were 0 then a similar model would hold with d replaced by d-l.

Vote that we do not assume that each af the components of xare imtegrated of

the same order. Such an assumption is not necessary for the results developed

below, but in connection with the examples this point will be discussed in

More detail. We want to derive an error correction model for xt, following

thfe ideas of Granger(1983). We shall first give a general definition of an

e~rror correction model and then give some examples before we prove the main

resjult.

The ultimate goal of this investigation is to be bble to finid the

properties of a vector process x fron, the defining equation in the
t

autoregressive form

Thre equation, which clef ines the process uniquely, must therefore contain

;!iitormation on the order of the process and of which components are

cointegrate-,d. The problem is how to extract this information. If we can fi nd

out, that the order of' integration is 2, say, then we, can write the equation

in tile forml.

A 0x t+ J1 x t +A 2 LJx

nd~ we want to inter-pret A 0x tand ,A X '< as stationiary error correct- on terms.

'hsinl ordfr to interpret thi:; as an error correct ion mod!l wef- must make sure



that all terms represent stationary termis and that they have not been

differenced too much. This is made precise inJ1

Definition 3.1 A model of the forin

k-1.k
z 1D X + A(L).dkXt f(L)46 Et t !

i tt

it; called a general error correction model of order k if

(3.2) A(z) is holomorphic for Izi < I-p and A(l) *0

(P.3) A D iX is stationary, i

(2./i is integrated of order k

(~5)f(z) #0 , zf < l+p.

The terms A D) .xt -s _< i < k represent error correction terms with

kk

autoregressive model for the stationary process d x. In general d = 0 but in

sor'! cases we need a different value. Nute that if i < 0 then the term 4 D .X

j- i: integral correction term, i.e. the jij fold summation fromn 0 to t of

D X

Some examples will be given below

E x amp-1e -3.1. Consider the process (ct,yt) given by the equations

Act My+ -1(ytict) +e t

62t

i~ example has been zd;~:pted from example 6.1 an(1 is treated in more detail-

io Sect ion 6. It is easily !;-!en that froin th' second equation it follows,

tii:dt is integrated of ordor 1. Now the first equation only mnakes; sense i f

iintegrated of order I as- wI , in~ stuch a way that , -C itz iii tCgrate(I of'
t t t

ord,-z 0, %iiice if for instan:e c! werc- integrated( or ordecr 2, then the left

lri!. 1 -;ide would be of order 1 aind the right fi:tnd side or orde-r 2. Tihus yt a1nd

r 'ecointfegrated Wit.1b cointeorat ior vector a' (1,-A) of' order 1, aurd tlhn*



iiiodel for ulc t is given in part by the autoregressive term /36y and in part by

the stationry error correction term yt_- .

Th,:s one can in a simple fashion identify the order of the vector process

(ctY t ) as well as the autoregressive part and error correction part in this

2e>xample. Note that if the second equation is replaced by d yt= 2t then the

analy-i.3 changes and ct and yt become integrated of order 2 and (Yt-Ct)

bt-comes integrated of order 1. In this case the first equation should be

rultiplied by d before one can identify the autoregressive part and the error

correction part, and then the error correction part is not a linear

c,':bindt 'on of the components of the process, but a linear combination of the

c.' Ton~nK; of the differenced process.

L.': :1.2. A modified version of the previous exmnple is given by the

Act = Yt + OA1 (yt._-c tL) + flt

dYt = 2t

t
,'A Z Z z . A full treatement of a similar example is given in

s; 0

S- ction 6. At this point we shall use it to indicate that it may not be so

obvi ouis to find the order of the process (ct,Yt) and find out in what sense
tt

thes- equations determine an integral correction model. We shall only note

t in:t in general the error correction t eros are stationary terms which are

I i'Yc-r cibii n:tions of the- vector procens differenced a suit ahi e number of

t ii; s. Finlly one -, can cnri ijn" the two t::arp] s and consi der an (equation where

hot h th- e.rror correct ion term as wele] I ,; th,_! integral correct ion term appear.

TIhli- in gt-n-raI one can h,:ave mnany crrror correct ion terris -in an error

c' rt,-ct ion Tl,)(1- corresponding to 1i lr.lr :o-l, i~nat i (ins which are intograte-d of

p, r .



In order to state the main result about the error correction model we

have to define three indices deternined by the function C(z). The necessary

mathematical results are given in Section 7, but here we shaltl briefly

recapitulate the definitions and results. From the asswnptions on C(z) it

follows that we can expand it around z 1 in a power series C(z) Z (1-z C-
j=O

which is convergent for Iz-lI < p. The results of this section are fornrulated

in terms of the coefficients {C.}. We now let N. = {x E RFJ x'C. = 0 }, i.e.
33 3-.

th*, null space for C.. We then define the spaces M. = 0 n ...fl n. of vectorsJ 3 J

;h;ich are null vectors for all matrices C., i = 0,...,j. Let m. denote the

(limension of N.. Clearly the spaces M. are decreasing and since C(z) is3 3

-.;ued to be regular for z *A 1 there is no vector x which is contained in

i N.. Hence there exists a k such that

S> m(}> . _m _ > m = n l ... =0.
0k-i k ,+

1o :
6'-; dffine n Z m. Z m. and le t r be defined by det C(z) (1-z) rf(z),j=0 j=0 J

wlll-re f(z) * 0.

Thus we associate with C(z) the three ntmibews (k,n,r) which will be u3ed

rep,iatedly in the following. We define C (z) by the relation
n-1

C(z) - Z (I-z)jc + (l-z)nC (Z), IzI < l+p,

j00

*,, tl,.- zrl j int C(z) by

(}(z~ij  = (-)i+J _t C.,t(z)

,.*c'() i: foljd by dleting ro,4 j and colu, m i frol. C(z). Let

n--i

j n

;'- ( ,rt the-n Fr-m,]at. .

TI,-or,• . 1. Th- p:o, ','% ; 'b' v (3.1) ai' Fies an a mtore ires v

L4



model of the form

(3.5) 2 ld - x +C (L) d f(L)zdr-n t  t 0.

If either C C (1) A 0 or if r n this is a general error correction model

of order d. ..

Proof. Theorem 7.3 shows that we have the following representation

k-i ,..
(3.6) C(L) =n-.h n  (L) =n-k[ z 16CnP k (L,)]."

n-k n-k+j n

and

(3.7) C .C(L) - C (L) , j
n-J n-j 3

where Cj(z) and Cn (z) are holomorphic in Izi < 1+p. Now the equation (3.1)

d - d
dr'fines dx as a stationary process, hence C(L)d xt is well defined and

stationary and

C(L)dxt =C(L)C(L)et = f()dret

w;irre, by Theorem 7.1, f(z) A 0, IzI < i+p. Now use the representation (3.6) -

tind we get

n-i n[ 2 Ac. +& nn(,)J~ldx= f(L)zLr ... "

jn-kt

which implies that

k j d r-n
(3.8) A C d-jc x t + C n (L)A x= f(I1)'d-e Cj=1 -~ 1

For this equation to be zin error correction mode] we have to check the

COH1t1itions (3.2)-(3.5). lie know, since C(1) A 0, tOat x It is inturated of

ordr d which shows (3.4). By multiplying (3.1) by Cn-J and using (3.7) we .

(p i) C Cnj C1 C , Cj -t.

-l 1-.-v

. . . . -- . . . - . . . i : -. -
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d-j -
which shows that A CnjXt is stationary and hence that (3.3) is satisfied.

Since C (z) is holomorphic and f(z) t 0, z[ < lI+p we only have to check that
n

C (1) # 0. Thus if C C (1) # 0 then (3.8) is an error correction model,

and if instead we assume that r n, then it follows from Theorem 7.4

k
thut Z-J .C. has rank m. Now since C0  C(1) A 0 we have M0  t- [0}, andj=O -0

hence there exists A * 0, A EM 0 Since the matrices {Cn I .... C } span

M0 we find that_

k '

0 0A'X C C. A'C C
j=0n3J n

i!hich implies that C # 0 and the Theorem is proved.n

The first term in the error correction model is

d-k-
n-k t

, Kch will represent an integral correction term if d < k.

r-n
It is seen that if r > n, then a difference A remains at the s's.

ThL; has the effect that when solving for xt, one has to sun the error

correction terms as well as the term Ar-n. The last one will contribute

* e.:.:i to the variance of the process than the first one, and in this sense the

ui in contribution to the variance of the process comes from the error

co-rection terms. Thus one has in fact succeded in explaining the major part

o, " tht e's in terms of interpretable error correction terms. If r = n there

o , ;:nce between the two kinds of errors, and we therefore call this the

t,; jra c'd cas. Vie f;hall see in the examples that both situations can occur

.v,, in the- -:nple. that hve been takern from the econometric literature. We

. , ,!,o :;, t hat on- (.An a [ways re(luce the unbalanced case to the balanced

c-,. , in tt ro',"ic ing new v riablI.;. This will be discussed in detail, in

1 2

• •. * • *. -. . - . ' . - •" ' " - " - . ,
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Section 7, and in connection with the examples 3.4, 6.1 and 6.2.

ExapL 3.3 Consider the system

[ X 1 =1 I 41 ?A1 h t.
4 2 t. I I 2t j

l3t] 0 2 0 j L 3tj
If we express C(L) as a function of 4, we get

(L Ii0 01 [00 1 [0 0 1
C(L 0 0~ 1011~2t 21 C 0 + dC I + .6C 2.

It easily follows that

r 11 [01 r[ii
N0 = sp{ 1-11;I0I} ; No n N =sp 1-11; No Nfl N2 1

and hne 2 1 =1 2 =... =0. Thus k=2,n=3 and since det C(A) =1

w(: have r n 3. The adjoint. matrix becomes

r 443 -242 3432

C(4!)= 0 0 42

L. --2d 24 -24,d

r0 0 01 [0 0 01 r4 -2 31
=' II 0 0 01+ Ji 10 0 1ii +42 10 0 011

[-2 2 -2] [0 0 0] [ 0 0

The equation now becomes

43 -+2- 3
A CI + 4C 2 +4 C 3 1X t 24 _t

No'.- cancel A n 4 and -rind the term corresponding to d 2 which give-, the

autoregsressive part of the model. Then

IdC32 . CI - -c2 + 2e6 +a +-bt+ ct

wh--,re zt,b,and c are determin(-d by the values before time t 0.

Now insert the three matrices C. and we get



- .. . . . . . . . -- .

r 4x -2x 0 1 0 1 r _l I
'2 i 0 1 = 21 0 l + Aj x I + 21 e2tI + P2 (t)

ixlt- 2t+Xt ]  [ 3 [ 3tj

or equivalently

2
(3.10) A [4 x -2x +3x ] 2s.t + S2 (t),"It 2t 3t i-'t-'2=

(3.11) 2 [xlt-x2 t+x 3 t] 2 e 3t + Q2 (t)
(3.12) A =-2 + (tR '

3t 2t + .2(t).

Note that the equations (3.11) and (3.12) are special cases of (3.9)

which express that certain linear combinations are integrated of lower order

than 2. From (3.11) we see that xlt-x2t+x3t is stationary apart from the
&i

trend. Note also that xlt and x2 t are integrated of order 2 and xltX 2 t is

integrated of order 1, but the variable that makes x1t-x2 t integrated of order

1 is the same as that in -x3t, hence xt-X 2t +x3t is reduced to stationarity. b.

Thus (3.11) is an example of a cointegration relation where all the components

are not necessarily integrated of the same order. Note that the example has

n r = 3 and in this case the rows of CI span M whereas the rows of C1 and

C2 span M, see Theorem 7.4.

Example 3.4. Let xt be given by the equations

AIx 2t] L 0 J Le2t I  
-

[1 O1 [1 -11 ro 0O [ 0 1]
C(L) I I + A I I ;C()=l I + AI I

L OJ 1 O L 0 1 [-1 J i I
and det C(L) A . We find N = sp 0 hence M = N and M0 L1 j 1  LOJ '0 0 1

N1 , giving the indices k 1, in0  1, m 1  0 , and hence n 1, whereas r=

2. Thus we are in the unbalanced case but C = C I 0 and we can apply Theoremn 1

3.1. In the equation

2C(L)Axt A 6

nwe can cancel A A and the resulting equation is a general error correction

.1. . ..



model. The autoregressive part is then given by the terms involving Ax We

then get

L-1 jdx t =  0 1 j Xt + Idst ''

vhich shows that x2t is stationary and hence that (0,1) is a cointegration

vector of order 1. The last equation is

d(x2t-Xit) x2t + zlE2t'

where the left hand side is the autoregressive part of the equation and on the

rigth hand side x represents the error correction term and e2t the shocks.

If we solve this for x2 t -xl then the major contribution to the variance will

t t
be the term x2 t, since V( I X2 ) increases, whereas V( Z zs 2 ) is constant in

s=O s=O

t. Thus the case r > n can be interpreted as the case where the major It -. ,

contribution to the variance is given by the error corection terms, whereas

the shocks only play a minor role. Another way of expressing this is that we

have combined the major part of the shocks into an expression which we can

,ive an interpretation, namely the error correction term. The case r > n,

ho;.ever, can be reduced to r = n by transforming the variables into new

variables which are linear combinations of variables of the same order of

integration, namely

lt Xt"

Y2t = -Xlt +  x 2t '

Th"i choice of these new variables is based on an analysis of the matrices {C}

-;ruch that the variables are line.ar comhinations of suitably differenced

(:o1::ponle nts of x t . This is di:;cussed in more detail in Section 7.

The equation for the new variabtes is found by multiplying by the matrix

-- 01

-- ] )



and we find

RFYltl r [  o ir i+4 -1 lt I  r i+ -li rs1ti

The relevant matrix functions are now given by

C(L) r 1 0 0 + , 0 -01 +,.2 r-..ol
-0 0 0 01 11.

6( :[ 0 O1 [ l+t[-1 1::

[L o r + o ii 42r I O1
[ 0 1] [ j L1 01

and det C(L) = 2 . In this case NO= spFl ' , N = sPro] N s rl and

2 LI I LI~J '2 - an

ticne M0 = No, M1  M 0 = N0 n N1 but M2 = f0}. Thus m0 = 1, m= , m2 = 0

which shows that k 2 and n = r = 2. The error correction model looks like

I 0 0 1 _-iy + [ 0 1 fl + ri oi" -L 0 J It + L 0 Jt + L oJt t"

Th' first two terms represent error corrections and show that A y and .'

are stationary, whereas yt satisfies the autoregressive model -.

Ayt t - y 't

it tYt 2ti~t = 2t-Y2t -  Y2t'

These equations are clearly equivalent in view of the representation of y2t as

a function of f-. The first analysis of this example showed that x is in -'

fact stationary. A fact which is obvious from the defining equation, since

one can cancel a d in the equation for x 2t' It is probably a good idea to

-start out with variables which are integrated of the same order. The second

analysis offers a more interesting point, since we find that not only is y2t =

x2 t-xit stationary, but in fact integrated of order -1, which shows that

Xt-A xt if; stationary. We have thus found a cointelration relation between.
two variabtos of the same order /tand 4j- . .

It 2t. _
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4. The error correction model derived from the auto rressi ye

reptesntat ion

Let the process fxt t 0} be given by the equation

*(4.1) A(L)x A ,F t 0,t t

where A(z) is holotnorphic for jzj < 1+p and non-singular for z P I ,but ACl)

0 0. We define the coefficients {A. by expanding A(z) around z = 1, A(z)

z (l-z) A. P Izi < p. We want to interpret the equation (4.1) as an error
i=0

correction model, see Definition 3.1. For this it turns out that we need to

*calculate the numbers (k',r',n') for the transposed matrix function A(z)'.

Theorem 4.1. The process xgiven by (4.1) is integrated of order less

than or equal to r'-n'-ik'-p and in the expansion

,r'--,i r Dn'j-P rL) _n f(L
(4.2) rnPA(L)xt z Ar A- + rAn+k- r' -nx f()'

jzk t

-ill Ler s a e s a i n r . I ei h r A k 0 or r' =n' then (4.2) is an

err-or correction model of order r'-n'+k'-p.

Proof. It follows easily from the definition of the adjoint matrix, that

(A '(z)0) (A(z))' and hence that we have from (7.4)

A(L) A k ,(L)

and from (7.6)

(.1.3 A A '-k' L) d'AAn -j() .

m uiltiply (4.1) by A(L) , thfen we- )j'ft

r n'- k'p
f(LAx A k(L)E~

* ~ ~ w4i [( shows thait

f 44 f(L)Ar' n'-k' C_ t ~ (~



is stationary. If Ank'(1) A 0 then xt is integrated of order r'-n'+k'-p.

If r' n', then, by Theorem 7.4, the rows of An, k, span M , 1 which is

non-empty and hence again Ak, 0 such that xt is integrated of order k'-p
• k "t

which proves (3.4).

Now multiply (4.4) by A. and we get from (4.3) that the first terms of .

the expansion vanish, and that

r-=k- 4 ks-j~~,.Le
Arn +k-f(L)A x t  A zk-AJ n ' -J (L)sti.-

jt n- t

which shows that

1r'-n'+J-PA xjt, ~ .. ,

Is stationary which proves (3.3). Since A., = Ak, (1) t 0 , by the definition

of k', it follows that we have an error correction model. In the case when r'

> n' one may get A~k 0 in which case xwill be integrated of lower order

and one may have to cancel some more powers of A before the model can be

interpreted as an error correction model, but the condition that An- 0

ensures that no power can be cancelled and that the results hold.

Exaiple 4.1. Consider the equations r

Ilt - 2t +d2t i t "

(4.5) d(x - x2t) 
6 2t'

It is clear from the second equation, that xIt-X2t is integrated of order I

and he~ice it follows from the first equation that Ax2 t is integrated of order2t12

1 and hence that x2t is of order 2. Thus all terms are not stationary, which

mezms that (4.5) can not directly be interpreted as an error correction model

in the sense of Definition 3.1. We shall give a formal analysis as follows:

Wf find

A()-r 1 01 r 1 01 r 0 11
-l+1 -4j [-] J [ 1 -11

• •- * . . . . . . ...... . . . .• . . . °....- *, •* :. i .. . . . .



giving k'= I,%' l~ 1' 0 and n' =1, while r' 2. The expansion of

r' -n'-dA A(L)xt now reduces to multiplying through by .4 in the equation
I..

defining xt, and we gVet

2
,d~ l~x2t+ 'dx 2 t Idsit

2 2
it t 2t

Theorem 4.1 now gives the or-der of xtis less than or equal to r'-n'+k'-p

2. Clearly r' > n', but it is easy to see that A n _k A0 0, which shows

that the order in this case is equal to 2 and that (4.5) has to be multiplied

by 4 to become an error correction model, and that the error correction term

becomes d(xit-x ). Thus in order to interprete the equation as an error

correction model one first has to multiply by 4.

5. Grangfr causality.

We shall consider the special case of (3.1) where =t (Yt zt) and C(L)

an.d Fare Partitioned accordingly

dr Yt1  r P(L) Q(L)1[eitl
S[zj 1 0 R(L) 1 6t

It is easily seen that det C(L) det P(L) det R(L) and that

r P(L det R(L) -P(L)Q(L)R(L)1
C(L)

L 0 R(L) det P(L)J

Apart from the assumptions on C(z) stated in section 3 we shall assume that

R(Z) is non-singular nnd that P(l) #0. Then one finds

11(L) ~ 2t

and

d -
(5.1) 4(yt Q(L)fl(L) z ) P()1t

One can detfine 11(L) O(L)R(L) and lot H7(I) 11 be the -impact of z ony
t yt

Wde shall cAl HT(L)zt the revealed target and y~ lLz the target error, see

t ~ ~ - ')I(Lz



Kloek(1983). We let (k,n,r) denote the indices for the matrix function P(z),

and get from Theorem 3.1, that if r = n or P n 0 then we have the error

correction model

k
(5.2) =12d nip (Y - (L)z ) + P- 1(L)t) = f(L)A-n.

n-j t IrLzt n 't t itz

We shall interprete this equation as follows: From (5.1) it follows that the

target error is integrated of order d, since P(l) # 0. Hence y can be tracked

by the target 1T(L)zt, such that the difference, the target error, becomes

integrated of order d. The error correction terms in (5.1) signify that

certain linear combinations of the variable yt can be tracked closer, in the

sense that these linear combinations of the target errors are integrated of

lower order, or in other words the target error is cointegrated.

Davidson(1983) compares the dynamic target I(L)zt, relevant for a

stady-state growth world, with the static target /fzt relevant for a static

-culibriun world. lie then calls 1(L) trend neutral of order m if l(L)tj = itj

for j 0,1,... ,m, and derives the restrictions to be placed on the structural

parameters of the equation system for this to hold.

Let us next assume that the equations are given in the autoregressive

frm:

r F(I) G(L)1 [ytI _r[lt"
[ 0 11(L)j LZtJ Le2t

,u.:!;ume that H(z) is non-singular , and that F(1) t 0.

The first equation j,,,

F(L)yt + G(L)zt Ape

whi'h can be written

(.,) F(L) (y -rf(,) -F(L)G(l)zt) dP6lt..

Ilre (k'rer') are the indices for the matrix function F(L)'. Hence the

- 2



revealed target is

711L) -d f(L) F(L)G(L)zt

Where H1(L) can be replaced by the first terms in the expansion

p-1
I1(L) z 4'iIT. + A H (L)

jz-r

psince ii M ()z t is stationary. Now in case r'=a' or F nk) * 0 the equation

(5.3) gives rise to an error correction model for the target error of the forM

k'lr'-n r' -

z A F i Byt-IH(L)zt]I + Fk)(L)[yt -lT(L) z tI f(L)4f si

of order r'-n'+k'-p. A simple example of this is given in Section 6.



* -'-x-. . --' . . . . . . . .

6.ExatnpIes. Consider the model proposed by Hendry and von

Ungern-Stcrnberg (198t) and discus-ed by Davidson (1983).

Fxantple _6.1 Let (ct,Yt,lt) denote the logarithm of consumption,

disposable income, and personal sector liquid assets respectively. The model

takes the form

(6.1) Act = UYt + 7(Y t-1 - t-1) + 112(Yt-llt -1 + S t

(6.2) dlt = 21(Yt-l-ct-1) + E2t"

To complete the system we shall add a third equation explaining how yt is

generated by e Then the equations will have the form discussed in Section

5 , and we can solve for ct and I t in terms of yt and s Let

f(L) --- + -2( 1 ) - 1 (1- d ) 2

Vie shall assume that f(z) 0 for z - 1. Then we find

A + it21 1 L ] mt] [ -3zi L] + 12 tL + --t]
t LI 21 A j j I [e L2 t]

anid hence

-l r I - 1 L I [['O'd+' L + 7
t I f- (L) I III +y +[II-it.' t- - L A + 711L J[t i21L J ltJj

The first t.r-m on the rigth hand side is the target ff(L)yt and the equation

(6.3) is the target relation. Now different models for y will give different

tthehaviour of c t and I t . W'e shall consider two cases ...

Case 1:

dy+ (C.
t -3t

wh ich sp-, a random walk with dri ft for Yt, and

Case 2:

e~v t  -- g + A C'gt -- : E- - -

,I h cats ; h,s j y t '-;kt ionary with z ro m:an, arid -ince a t.rget relation is

NOW



given up to stationary terms we find that (6.3) reduces to

(6.4) ct Yt Ayt/7 2 1 f stationary terms

(6.5) it Yt AYt((13-1)2 1  )/1 212 + stationary terms.

I t'e now taike expectations given the negative past we get

E(c) E(y -g/

E(1) E(y ) + ((/1-1)1 + 1g/2
t t 21 1 11

which are the equations one would get by formally lettingdyt  g be

non-stochastic and equating the e's to zero, see Davidson(1983).

Thus both cases give rise to the same long-term relations, but it is seen .

that in case 1, we have that Ayt - g is stationary, and hence yt is integrated

of order I and therefore the same holds for ct and 1t . Thus (6.1) and (6.2)

for-.m an error correction model with an autoregressive representation of Act,

Alt, and dyt, where ct and It are cointegrated with y t such that ct-yt and

I Yt are stationary and enter the equations with suitable coefficients.
.2y

In case 2, however, A y is stationary which implies that ct and I t are

iot.-g/rated of order 2. Thus by differencing (6.1) and (6.2) we get an

autoregressive representation of A c and A It . Note that in this case elt"

ar2d t enter only in the differenced form, which shows that the main

contribution to the variance of ct and It comes from 'dyt and the error

corrs.ction terms A(l-y t ) and d(ct-yt). Thus the interpretation of (6.1) and

(".2) as an error correction model depends on the model specification for the

OX,,.% ne ,,s variable Y

We shiftH now show hw the formal procedures developed .in S',ctions '3-5 can

1' *,tp! i,-d to this oxampI,.. If we writ e the case 2 in the autoregress ive form

(r; G) A(L): "

t ..
7.-C.i'.

wiire>: ( 1 t~r



A(L) =-Z A -7 i 1 [ :
A() 21( 1A 21i'~

1 0 0
which by the analysis of Section 4 has k' 1, n' 1, and r' 2, whereas p

r -n' -. "-
0. Hence Theorem 4.1 shows that we shall multiply (6.6) by 'd - d. it

is easily seen that An, W A0  0, such that the resulting equation gives an

error correction modeL of order 2, since r'-n'+k'-p = 2. We then obtain the

information from the analysis that A(ct-yt) and d(ItYt) are the stationary

error correction terms. Note that r' > n' such that we are in the unbalanced

One can reduce to the case r' n' by introducing new variables which are

found by analysing A(L)', see Theorem 7.5, and the comments at the cnd of

Section 7. It turns out that the new variables, in which the problem becomes

Lanced are

it c- t Yt +4Yt/321 ) "
u2t = t - t + t(21 11 l/ 2 21 ,-..

u 3t Yt

In terms of' the new variables the equations now become

1 Ut + 122t I (-t 1 )4U1 t - 2411ut - (i-/1 42, = Lt

u21UIL 2 u11  6u1t 4 (1 4 (/3 - 1 + -1 2 2t
21 IL 2 It 2t11121 1~2 31 2

* 4a3t =3t

and .--ne-. we gret an cr'rnr 'orrectin model with an autoregressive model for

A 'yt exp,im,'d by the errur corrction terms which are recognised as the

t-i'get errors (6.4) and (6.5)

If wt. rol ify the k'eyr: t ion (.-) to give an integral correction equation

gt

(;.7) Act f-Y- 1(Y --I--t 1 7 Adb, - ......+ E
t 1I It-- - 1 ) i t. • '- -. ,

................................................................................ . .



which together with (6.2) determines a system of equations for (ct,lt). We

solve (6.7) in the form

ct = Y + ( (31) + 4lt)/(dl0 + d(l-t )

This shows that if d2 y is stationary, then c -Y is stationary, and hence ct .o -

is integrated of order 2, and the target relation is

ct y Y+ stationary terms.

The similar relation for 1 becomes

it + A-l 2t + stationary terms.

The formal analysis proceeds as follows: We multiply through by d to

avoid the negative power. We then have an expression of the form (4.1) with d

1 and

2 2r l+('Yl l)+I(- ll )  0 -dl+'d(dl-l)d(l-l .

A(L) I 7214(l_) 42 1214(1_)

I. o -3 "

Vie find k' 2, n' 4, and r' 5, but somne calculation shows that An - -

A2 # 0. Hence the process (ctxlt,Yt) is of order r'-n'-+k'-p 2, and we shall
-n'-d' 0 O-

multiply through by d = 4 in order that the equation can be

interpreted as an error correction model. We thus find that ct-yt is a "

stationary error correction term which appears with coefficient -d11 in the

expression for A2 and in the form *-dt (ctY) in the equation for A2 t .

Sin tce r' > n' we can introduce a nE-w variable, and an investigation of

tf,, columns of A(L), or the rows of A(L)', wilt show that the new variable is

ut ct - yt --Ayt(Pl 1)/0-

to,-ether with I and yt" In the new variibl t-hA r- mt rix A hecoifl. s
t t

2
)) 2- ) 2 0 (1-1 0 A: " I I

1 - o 1 1 1 3 I-

A( )A L-d I A t/

21 1* 1



which is seen to have k' 3, n' r' 5. Hence the process (ut~Lt,yt is

integrated of order r'-n'+k'-d 2, and we shall multiply through by Ar

* A .Thus we shall cancel a factor A again and we find that the error

*correction terms now are A tudt and Al~ which appear in the

*autoregressive model for Ay Thus we find that ut C- Yt4 2 yt6l)/0i is

in fact integrated of order -1, which means that c~ can be tracked extremely

well by vt+ AyIOW l in the sense that the error does not accumulate,

t
i.e. the sum of the target errors Z u has a bounded variance.

S=O

The next example we shall consider is a model proposed by IlarveY(1982)

*for a stochastically varying trend.

1xunl 6. 2. Let the variables ytM,,t and x t be given by the

equations

M+ ax +6s
t t t it

lot 3t

t 4t.

This is an autoregressive model, and we find

ri -1 0 -a]

A(L 0 d-1 01
0() J 0 'd 0,

10 0 0 Aj

which has determinant det A(L) el, and hence r' 3, and we find k' I and

n' 2. Thuis we ar- in the unbalinced case, but it is easily seen, that

A, AA 0. Hlence Theorem 4.1 shows that the process is integrated of

ordeir r'- W k--p -- 2, and that a factor of Arn A is missing in the

equations before they (can be interpreted ats an error correction model. Then

2
the term inivolving A w i I b- the autorefsres ive part and those wi th A the



error correction terms. It then follows that (yt - mt-xt) and I6t are the

stationary error correction terms, and that the only error correction equation

where anything is corrected is ...,-
A mt =lot + AF-2t" 

"*

It is seen that the main contribution to the variance of m is due to the

stationary error correction term 4 t  Note that yt and m t are integrated of

order 2, and that yt-m is integrated of order 1, whereas Yt-mt-axt is

integrated of order 0.. Hence we have an example where three variables are

involved which are not of the same order.

Since r' > n' a differencing was needed. It can be avoided by

introducing the new variable ut = Amt- 6t . The problem is now balanced, and

the equations become

Yt mt = ~t it •

ut 6 2t

A 2 m -Aut = 3t
t 3

Axt 4t

In this case k' 2, n' r' 3, and the process is of order r'-n'+k'-p = 2.

Hence the imbalance in A has been removed by the change of variables and the -

new equation can be viewed as an error correction model ,where we now get the . -

information that yt-mt-x t and ut are the stationary error correction terms,

whereas xt is the error correction term of order 1. The relevant error

correction model now becomes

A 2 ot Allut + 3t

wYhlere now the error correction term contributes less than the shocks to the

variation of yt•

7. Mathematical results

- 27--l
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Consider a matrix valued function C(z) which is defined in an open disc

D {z ; IzI < l+p } in the complex plane. The function is called holomorphic

if the n'th derivative exists for all n, and it is a well known result that

the Taylor series expansion of a holomorphic function at a point z e D

converges in the largest open disc contained in D, see for instance .

Thron(1953).

We shall investigate the function C(z) around the point z 1, and we

assume that the matrix C(z) is non-singular for z # 1, and that C(1) is

singular, but # 0. We define the coefficients {C. ; j = 0,1,... by the

expansion

C(z) = (l-z)3C , Il-zi < .
j=0O

We shall repeatedly use the fact that if C (z) is defined by
n

n-I.
C(z) = 2 (l-z)jC. + (l-z)nC (Z)

j=O
then C (z) is a holomorphic function in D. This follows since the functions

n "

n-I
C(z), Z (1-z)3C., and (l-z) -n are holomorphic in D as long as z 1 1. At the

j=O

point 1, however, the function C (z) has the expansion C (Z) = E (-Z)J.
n n j+flj=O 0

Iz-lI < p, which shows that C (z) is also holomorphic at the point 1. We

n

want to give a representation for the determinant of C(z) and for C(z) the

adjoint matrix defined by

C..j(70 ) (-~+det Ci(Z) -

1j

where C0i(z) is obtained from C(z) by deleting row j and column i. Note that

C(z) is also holomorphic s.ince each element is given as a finite sum of finite

products of holomorphic functions.

- 2 F---
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We define the coefficients {C. ; j 0,1,... } by the expansion at z = 1
Co

C(z) 2: (I-z)JC.. We define the null spaces
j=0

N = { × E IPn I x'C = 0), j = 0,1,...J j

and

M.= N f N l ... n N. 
j 0 1 =

Then, since C(z) is regular, there is no vector x which makes all C zero,

hence M. = {0} for j -: k, say. Note that Ck must be non-zero, and that _--

{0}, and that C = C(1) # 0 implies that M0 # Rm. We shall now define the

index n =Z m., where m. is the dimension of M.. The basic idea is that if x
j=O 3

C f., then

x'C(z) =(I-z)j~ x'C j+l(Z) ,

since the first j-l terms x'Co,...,x'C, are zero. This corresponds to thej

ida that x is a cointegration factor of order j+l, and we shall use this to

evaluate the determinant.

Theorem 7.1. The multiplicity r of the root z I of det C(z) is

greater than or equal to n, hence there exists a function f(z) A 0, such that

r
det C(z) = (l-z) f(z).

Proof. We want to choose a convinient coordinate system to evaluate

th,. determinant and this is done as follows: From the relation

M 0 D M M =( 0}

W,: got an orthogonal decomposition of [P

STim V0 + VI + ... vk 9

wl'Fre

V. M ,  nm No n ... n NjIn N.

i!; of dimension m.,-tn.. Note that C(I) t 0 implies that V0 # (0} and that

-29-
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the definition of k implies that Vk t (0).

We define C(z) by x'C(z) = x'C.(z), for x E Vi, then

(7.1) x'C(z) (1 z) 3 x'C(z) , x V.

where x'C(1) #0, since x 4 M.. Thus V. is the space of cointegration factors

of order j. JJI

Now choose a basis {v.; = l,...,m } for RF, such that the vectors given -

by {v.; j =n-i.l+l,...,ma-i. } span V.. We use the notation ml = m. We

define the order of v. to be i(j), thus i(j) i if v. G V.. Note that
J J I -

m o

a;Ix i(j) k and that Z i(j) = Z i(mi 1 -mi) =Z m. = n. From (7.1) we find
l_5j-!m j=l i=O i=O

v'C(Z)v q = pq(z) (l--z) Cpq(z)

ov"

C(z) =diag{ (l-z p) ;P Is ,...,Im} C(z) ":

and hence that det C(z) (l-z)ndet C(z). Now let r be the multiplicity of

the root z 1 of det C(z), then r > n, since C(l) may be singular. This

co;ipletes the proof of Theorem 7.1.

Corollary_7.2 For the adjoint matrix we have the result
,~ ii+j r (z)

(7.2) Ci (z) ) (--)'+det C3 1 (z) = (-I) (Iz f. (z ) 

where f..(z) # 0 and r n-p when v. V

Proof By deleting the row j with v. E V from C(z) we leave out a

factor (l-z) p in the determinant and the index n is reduced by p,

00

Th- next result gives a representation of the matrix C(Z) - Z (l-z)jC.
jZO

Theorem 7.3 The coefficients of the adjoint matrix satisfies

(7.3) C. 0 , j 0,l,...,n-k-1

and hence

l - .3.t) -



- ~ -. . " -. -.-

(7.4) C(z) (l-z) C n-k(z)

Further

(7.5) C .C. 0 0 ,0 : i < j _< k

which shows that

(7.6) C nC(z) = (l-z)JC C.(z) , j = 1,...,k.
n- n-J j

Proof Let us consider the coordinate system {v.; j = 1,... m } from

the proof of Theorem 7.1, and express C(z) in these coordinates. From (7.2)

we find that r.. : n-p when v e V, but we have n-p _ n-k. Thus the smallest
Ji P

power that can occur in the expansion of a(z) is n-k, which shows that C. = 0,

j < n-k, and this proves (7.3) and (7.4). To prove (7.5) and (7.6) we will

show that

(Cn-j)pq (Ci)qr =0 for all p,q,r and 0 _5 i < j _< k.

We then get (7.5) by summing over q. Now if q -< m-m]l. then v e V0 +
q0

+ V. and r > n-(j-l). Thus the smallest power in the expression forj-1  qp

C(z) is (l-Z)n - ( j - l ) which shows that (C nj)pq 0.pq n-j -_"q..

Similarly if q > m-m., i.e v E V. +'+ =Mi then clearly v 'C.
qi i+l Vk q qI

0, and hence (C.) = 0. Now if we take i < j, then m-m. -< m-r._ which
-qr I ji'

shows that all q values were considered, and this completes the proof of the

relation (7.5) and (7.6).

The relation (7.5) shows that the rows of C . are contained in the nulln-J

spaces of' C. whenever i < .j, atid in particular that the rows of1

C , Cn -(i+l), -.. . n-k'.-"

are contained in M. N n ... n N.. We can now prove
1 01

-3]-. __
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Theorem 7.4. If r n then Z C .C. is proportional to the identity and

the rows of C n-,... n-k spn1

Proof. If r =n then the inatrix 0(1) is regular, see the proof of

Theorem 7.1. From the relation

C(z)C(z) det 0(z) Inx

we find from the fact that C0  . Ck 0Oand C .C.0for0:5i < j

< k, that the first possibly non-zero term on the left hand side is

nk-
(l-z)" ZC C.

n-j j

k
n

and if det 0(z) (1-z) f(z), f(z) 0 0, then X C .0 is proportional to the
j=0 n-.

identity and hence has rank mn.

Now consider the terms (C .)(C. From the proof of Theorem 7.3 it
n-j pq j qr

follows that

(C 0 rfor q 5 n-n
n-j pq _

and that

(C.)q 0 for q >in-n

hen ce

(n-J Ci pr Z Cn-jpqCjqr

vihert- the summation is for q such that in--rn- < q :S ur-rn or v qE V.. This

-;hows that the rank of C .0iC is less than or equal to rn. -i.. lie then

evaluate as follows

k k k
mn rank(Z C .0.) :S Z rank(C .0.) C S 2: in .

j 0 fj j=O0 l j~o jl

It follows that equality holds throughout and that

-3 2-



rarkC. _ rank(C_ = mIn -m.
n-i n-j J -- j

This completes the proof, since then
k

m. > rank(C C k (m M
n-i-l'... n-k j l "---m."

j=i+l

which shows that the matrices on the left span all of M..

If r > n we do not get so complete information, but we shall show below

how the case r > n, the unbalanced case, can be reduced to the case r = n, the

balanced case. The idea is that instead of taking only linear combinations of

the x's we allow powers of A in the coefficients. We can then prove, that by

transforming the variables we can increase n while keeping r fixeu, and we

thus reduce to the balanced case after at most r-n transformations. A similar

idea is the starting point for the work of Yoo(1985). If r > x then C(1) is

singular and we can find a vector a = I a v 6 F? such that a'C(0) 0. Let s
p=l p p

bhe. the largest j for which a. # 0, and define T (z) by
j ar V' ,js

I 3 ,

vj'Ta(Z) = t I (-i(s)-i(p)a v
sp=l p

Ile can then prove

Theorem 7.5 The matrix function

C (z) = T (z)C(z)
a a

has indices (r ,n a,k), where r r, n > n + 1, and k _ k.

Proof. Since (let T (z) = 1 we clearly have r r. For j * s, we have
a a

v'C a(Z) = v.'C(z),and it follows that the order of v. is the same for C (z)

as for C(s). If j = s, then
S"

Sv 'C (z) Z (l-z)i(s) i a v 'C(z)S s a p .

S i(s)-i(p) i(p)
- 1 (l-z) a (-z)i) v 'C(z)p:l1 P P- •

-33--
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= (1-z)i(s)a'C(z).

hence, since a'C(l) 0, we get that the order of v is _ i(s) + 1, which
S

implies that k is at least as large as k, whereas n is greater than n.
a a

Let us briefly discuss the relevance of the above formulation for the

theory of time series. The reason that the holomorphic functions play a role

is that if {zt; -< < t < - ) is stationary, and if B(z) = Z ziB] is
t1 i=0  .

*O
holomorphic for jzj < l+p then the process yt B(L)zt E B zt- i is a

i=O

stationary process. The coefficients B. decrease exponentially fast in i,
b

wh*ch shows that the process fyt } is well defined and it is easy to see that

it is stationary.

We have throughout considered the matrices as linear transformations of

the row vectors, using the notation v'C(z). This comes from the fact that in

the moving average model (3.1) the change of variable yt Txt gives the

relation

d
A TC(z)st

Thus by choosing a suitable T we can change the variables to find a convinient.

coordinate system in which to calculate the determinant or, in case T depends

on I,, to reduce the unbalanced case to the balanced case.

If the starting point of the investigation is the autoregressive model

(4.1) then the change of variable yt= Txt implies the equation

A(L)TY-1 [V -1

Thus the inverse of T' operates on A(L)'. Now it is easy to see that from the

definitin of the adjoint, it follows that (A(L)') (A(L))', and hence that

the results of the previous Theorens can be aplied without problems.

let us end this section by giving explicit]y the transformation of the

-34-
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variables that increases n by at least 1.

if

A x (L)e

and a'C(l) 0, then we can choose yT T LMx as follows
a t

yjt -I1 i(s)-i(p)
La s X a px tjs.

p=lpt

if

A&(L)x~ t

and a'A(l)' =0, then one can introduce the variable ytby

r X -I i(s)-i(j)a xt<

yit L 'Xjt j

Examples of this are given in Section 6.
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